
Webology, Volume 19, Number 1, January, 2022

83 http://www.webology.org

Solve the Problem of Chess Board in the Shape of the Letter L with

Three different Patterns Using Artificial Intelligence & Algorithms

Israa Shakir Seger

College of Basic Education, University of Muthanna, Muthanna, Iraq.

Israa M. Hayder

Department of Computer Systems Techniques, Qurna Technique Institute, STU, Basrah, Iraq.

Hussain A. Younis*

College of Education for Women, University of Basrah, Basrah, Iraq.

School of Computer Sciences, Universiti Sains Malaysia, USM, Penang, Malaysia.

E-mail: hussain.younis@uobasrah.edu.iq

Hameed Abdul-Kareem Younis

College of Computer Science and Information Technology, University of Basrah, Basrah, Iraq.

Received July 10, 2021; Accepted November 12, 2021

ISSN: 1735-188X

DOI: 10.14704/WEB/V19I1/WEB19006

Abstract

In recent years, the chess game has begun to develop successful programming solutions.

Computers were programmed to play chess in the middle of the twentieth century. Computer

skills have become better and higher than the skills of chess players in the world, and from

here this study has made it possible to find the optimal solution for the four square pieces in

the form of a letter (L) without repetition and quick access to fill the sites and voids and to

complete the entire area. It is our task to cover a (2n×2n) Chessboard with L-shaped tiles each

tile is a (2×2) square with a (1×1) square removed from one corner. We are working to cover

the Chessboard in such a way that there is a single 1×1 box left in the ‘corner’ of the

Chessboard (by the 'corner' we mean one corner of the box should be uncovered). In this task,

we will solve this problem with three approaches, the C programming approach, the second

by dividing and conquering approach and the last by a greedy method approach. Three

algorithms were used and a comparison was made between them, and the fastest method was

achieved by a greedy method, with eight cases comparing one and four cases, respectively.

Keywords

Dynamic Programming Approach, Divide & conquer approach, Greedy Method Approach.

Webology, Volume 19, Number 1, January, 2022

84 http://www.webology.org

Introduction

A lot of puzzles are used on the chessboard, and the most common puzzles are the wheat

problem and the chessboard, the Queen’s problem, the Knight’s tour, the Defective

Chessboard Problem (Anany Levitin and Maria Levitin, 2011). In this paper, we will talk

about the defective chessboard problem. We have a 2k*2k board and we have L-shaped

tiles, the task is to cover all parts of the board using this tile, except one box called

Defective. In this task, you can rotate the tiles with four different orientations; Figure (1)

below shows the shape you can use.

Figure 1 a. Four different tiling’s of a 2*2 courtyard b. The covers L-shaped

Let k be a natural number, assuming that Claim (k) is true, i.e. assuming that a 2k*2k

courtyard can be tiled with L-shaped tiles in such a way that there is a single 1 * 1 hole

left anywhere us like in the courtyard. And one of the most important ways to solve this

problem is by using David and Conker and that all solutions depend on his put way tile.

Figure (2) below shows that, and in this paper, we will use shape (C) in Figure 2 to solve

the problem.

Figure 2 Put tiles

Webology, Volume 19, Number 1, January, 2022

85 http://www.webology.org

Some studies Applied to dynamic programming Approach for optimal control of dengue

virus spread (A.P. Putri, 2018). Visual place recognition in a changing environment

(J.H. Oh and B.H. Lee, 2017). Detection of human emotions (W. Mardiniet al., 2018). For

the planning of Drone Routes (H. Gjorshevskiet al., 2018). Planning Reliability Growth

(L. Sell and W. New, 2018). Electrical vehicle (Z. Pan et al., 2020). The Divide and

conquer approach Many works from them Multi-label Learning (W. Zhanget al., 2017).

The generation of mid-infrared frequency combs (K.L. Vodopyanov, 2010), Message

(I.M. Hayder et al., 2019), Placement of the sensor (C. Jiang, 2019). Rapidly Learning

Bayesian (K.L. Vodopyanov, 2010).

Related Work

Researchers have proposed a game model for a strange game, specifically to learn about

the interaction between an electrical riot and the attackers on the grid. Lead to correctly

track power outages during a non-cooperative, zero-sum attack vector game (Coordinated

Cyber-Attacks) CCA (Machine Defector). The study provided for the assignment of

infrastructure, defense and cyber security, and the validity of the attack vector was

verified by the use of the power of the centered carrier New England 39 bus power with

Greedy Method (H. Rp et al., 2019).

This study deals with the teaching arrangement in the divide-and-conquer algorithm,

aiming at the deficiency that the new teaching approach uses the ability to decompose

sub-problems and raises the complexity of teaching, the coverage series is enhanced

for the L-type dominoes. The enhanced algorithm can be compatible with the

divide-and-divide strategy Conquering and c and enhance the normative design and

accuracy of the process. Algorithm, thus achieving the desired outcome of teaching

(Z. Li, F. Huang et al., 2009).

An algorithm was proposed to improve run time to 3.9% based on the results of the

implementer’s experiments on the proposed algorithm. The algorithm has five stages

included in the first stage, the data is stored in the Hadoop structure. In the second stage,

we collect data using the MR-DBSCAN-KD method to identify all outliers and clusters.

Outliers are then assigned to the present groups using a futuristic greed method. At the

end of the second stage, groups are merged together. Blocks are assigned to the reducers

in the third stage. Note that the number of reducers must be reduced for this task by

applying an approximate load balancing between the reducers. In the fourth stage, the

reducers perform their functions in each group. At the end of the final phase, the output

return reducers. The reduction of the number of reducers and the assembly revision helped

reducers to do their jobs simultaneously (A. Bakhthemmat & M. Izadi, 2020).

Webology, Volume 19, Number 1, January, 2022

86 http://www.webology.org

One of the studies showed pure electroencephalography using a dynamic programming

approach to detect and classify human emotions in brain waves The inputs of this study

are students between the ages of 20-24 years of age who reveal feelings of sadness,

happiness and fear by placing sensors on the scalp that transmit signals measured to the

sensory device and then analysing positive data results have been obtained (W. Mardiniet

al., 2018).

Methods

Dynamic Programming Approach

Divide the problem into a series of overlaps Sub-problems, building solutions to larger

and larger Sub-problems and can be store the Sub-problems solutions to solve big

Sub-problems, there are two approaches to solve Dynamic Programming the first

approach by Bottom-up in this technique divide a problem into Sub-problems then solve

children and store it and then.

Solve the parents, the second approach by Top-down approach in this technique divide a

problem into Sub-problems then solve parents and store it and then solve the children, in

this problem we will use this technique (A. Bakhthemmat & M. Izadi, 2020, H.A. Younis

et al., 2020 & A. Ozolins, 2020).

Solve Defective Chessboard Problem by Dynamic Approach

We choose one box of the chessboard and assume that it is at the top right and store the

value of the box in the array and then put the shaped like L letter in the center of the

chessboard. The angle of the shape depends on the location of the box chosen previously,

and then we divided the chessboard into four parts, and we repeat the process by putting

the shaped like L letter in the middle of the sub-chessboard, the figure (3) below shows

these steps.

Figure 3 How to solve problem

Webology, Volume 19, Number 1, January, 2022

87 http://www.webology.org

Proposed Algorithm (1)

Analysis

In this case, classified its dynamic programming because:

1. Each value center save in the array and move to depth by divide chessboard into

sub- problem and iteration this process by search the center and then save each point.

2. in this problem overlaps problem because we can't find Children value Unless

finding parents value.

3. the new shaped like L letter in the center depends on shaped like L letter on the

parents.

 0(1) if n <= 1

T(n)= (1)

 T (n) = 4T (n/2) +c if n >1

Divide & Conquer Approach

It is a way to divide the large problem into two or smaller instances (problems) that are

easier to solve, and then merge the solution to solve the big problem. Divide-&-conquer is

the strongest algorithm design technique used to solve many important problems such as

merge sort and often instances of the original 3 problem and may be solved using the

divide- &-conquer strategy recursively. There are also many problems that humans

Webology, Volume 19, Number 1, January, 2022

88 http://www.webology.org

naturally use divide and conquer approaches to solve, such as sorting a stack of playing

(A. Bakhthemmat & M. Izadi, 2020), (Z. Li, F. Huang et al., 2009).

Solve Defective Chessboard Problem by Divide-&-Conquer Approach

As mentioned earlier, a divide-&-conquer (DAC) approach is used to solve the problem.

DAC entails breaking a big problem into sub-problems, ensuring that each sub-problem is

alike of the larger one, albeit smaller. The total number of squares on our board is n² or

4^k. Removing the defect, we would have (4^k — 1), which is always a multiple of 3, the

figure (4) below show the tree how to divide chessboard.

Figure 4 The tree Chessboard Problem by Divide-&-Conquer

Proposed Algorithm (2)

procedure TILE (N, (Bx, By , ((Tx , Ty))

 if N = 0 then

 return

 mid 2N - 1

 blocked (0,0), (mid - 1,0), (mid – 1

 mid - 1 , (0, mid - 1)}

 if Bx ≥ mid and By ≥ mid then

 blocked Quad TOP_RIGHT

 if Bx < mid and By mid then

 blocked Quad TOP_LEFT

 if Bx < mid and By < mid then

 blocked Quad BOTTOM_LEFT

 if Bx > mid and By < mid then
 blocked Quad BOTTOM_RIGHT
 place (Tx + mid, Ty + mid, blockedQuad)
 tile (N - 1, blocked [0] , Tx + mid Ty + mid)
 tile (N - 1, blocked [1], Tx , Ty + mid)
 tile (N - 1, blocked [2], T.TU)
 tile (N - 1, blocked [3], Tx + mid Ty)

Webology, Volume 19, Number 1, January, 2022

89 http://www.webology.org

Analysis

After fixing each of the four sub-problem and merging them together to form a complete

board, we have 4 flaws in our board: the original defect will fall into one of the quarters,

while the other three were the ones we intentionally added to solve the problem with the

DAC. All we have to do is add a final Tryonimo to cover these three "flaws" and we're

done.

Thus, the recursive equation becomes for time complexity:

T(n) = 4T(n/2)+cc (2)

Greedy Method Approach

The greedy algorithm tries to resolve the optimization problem through usually choosing

the next optimal step locally. This will generally lead to the optimal solution locally,

however no longer necessarily to the optimal solution globally. When our optimization

goal is to amplify some quantity, we call the optimum answer locally the maximum and

the superior globally max. If we reduce the amount, we call it minimum or minimal

respectively. In reality it capability optimization problems we wish to find an optimal

solution, among all feasible solutions, to either minimize the cost or maximize

(A. Bakhthemmat & M. Izadi, 2020), (J. Sannemo, 2018).

Solve Defective Chessboard Problem by Greedy Method Approach

At the beginning of the algorithm, we will find first for the (main and secondary)

diagonal, and then we will divide a big problem into small problems. Each sub-problem

has (locally- Optimal). And in the optimization, we will find the (main or secondary)

diagonal depending on the location of the square until we reach the end of the tree, the

figure (5) below shows algorithm.

Figure 5 How to find main or secondary diagonal

Webology, Volume 19, Number 1, January, 2022

90 http://www.webology.org

Proposed Algorithm (3)

1. Draw diagonal (main and secondary)

2. ChessboardRec (board, Xbeg, Ybeg, Xend, Yeud)

3. if board 4 theu Return

4. Draw diagonal (main or secondary)

5. ChessboardRec (board Xbeg, Ybeg, Xend / 2.Yend) / 2)

6. ChessboardRec (board, Xbeg, Yend / 2, Xend / 2.Yend)

7. Chessboard Rec (board, Xend / 2, Ybeg, Xend, Yend / 2)

8. ChessBoardRec (board Xeud / 2.Yend/ 2, Xead , Yend)

Figure 6 Proposed Algorithm 3

Analysis

In this case, classified its greedy method because:

1. Grow the tree gradually, and each sub-problem solve by optimization.

2. In this case, optimization is drawing the main or secondary diagonal depending on the

location of the chessboard if it is on the (up-left or bottom-right) side, the optimizer

will draw the main diagonal, otherwise will draw secondary diagonal, the figure (6)

shows how to work the optimizer. the figure (7) below shows how to analyze the tree.

Figure 7 The tile analysis tree

Webology, Volume 19, Number 1, January, 2022

91 http://www.webology.org

Conclusion

The figure (8) below shows how to fill an L_shaped array with three algorithms and

shows the difference between them.

[[3 3 4 4 8 8 9 0]

 [3 2 2 4 8 7 9 9]

 [5 2 6 6 10 7 7 11]

 [13 13 14 1 1 18 19 19]

 [13 12 14 14 18 18 17 19]

 [15 12 12 16 20 17 17 21]

 [15 15 16 16 20 20 21 21]]

1) Dynamic Programming Approach

[[1 1 2 2 6 6 7 7]

[1 5 5 2 6 10 10 7]

[3 5 4 4 8 8 10 9]

[3 3 4 21 21 8 9 9]

[11 11 12 21 16 16 17 17]

[11 15 12 12 16 20 20 17]

[13 15 15 14 18 20 19 19]

[13 13 14 14 18 18 19 -1]]

2) Divide &conquer approach

[[0 0 13 13 15 15 6 -1]

 [0 1 1 13 15 7 6 6]

 [14 1 2 2 8 7 7 16]

 [14 14 2 9 8 8 16 16]

 [17 17 10 9 9 3 19 19]

 [17 11 10 10 3 3 4 19]

 [12 11 11 1 8 20 4 4 5]

 [12 12 18 18 20 20 5 5]]

3) Greedy Method Approach

Figure 8 The filling of an array with L_shaped

In this step, we will implement a program that includes three approaches and compare the

difference between time complexity and summary (1). The difference appears when

exponential increases to 13. In Divide & conquer it reaches 100 seconds, in the Dynamic

Programming reaches 89 seconds, and Greedy Method reaches 33 seconds.

Table 1 The time summary for each approach
Time summary

 DynamicPro D & C GreedyMethod

0.0 0.000041 0.000049 0.000013

1.0 0.000049 0.000061 0.000024

2.0 0.000128 0.000135 0.000034

3.0 0.000335 0.000403 0.000121

4.0 0.001310 0.001298 0.000399

5.0 0.005173 0.005418 0.001745

6.0 0.019932 0.020620 0,006643

7.0 0.081807 0.091426 0.028207

8.0 0.331771 0.367435 0.126042

9. 0 1.393112 1.530192 0.509616

10.0 5.621440 6.356095 2.117079

11.0 22.388280 25.191683 8.000013

12.0 89.661425 100.000013 33.000013

Webology, Volume 19, Number 1, January, 2022

92 http://www.webology.org

We notice that the greedy algorithm is faster than the rest of the algorithms, then the

dynamic algorithm, and finally divided & conquer is slower than the all, and Figure (9)

below shows the difference between them.

Figure 9 Running Time the three algorithm

References

Levitin, A., & Levitin, M. (2011). Algorithmic puzzles. Journal of Visual Languages &

Computing, 11(2559).

Putri, A.P. (2018). Neuro-dynamic programming approach to optimal control of spreading of

dengue viruses. In International Conference on Computer, Control, Informatics and its

Applications (IC3INA), 169-174.

Oh, J.H., & Lee, B.H. (2017). Dynamic programming approach to visual place recognition in

changing environments. Electronics Letters, 53(6), 391-393.

https://doi.org/10.1049/el.2017.0037

Mardini, W., Ali, G.A.S., Magdady, E., & Al-momani, S. (2018). Detecting human emotions

using electroencephalography (EEG) using dynamic programming approach. In 6th

International Symposium on Digital Forensic and Security (ISDFS), 1-5.

Gjorshevski, H., Trivodaliev, K., Kosovic, I.N., Kalajdziski, S., & Stojkoska, B.R. (2018).

Dynamic Programming Approach for Drone Routes Planning. In 26th

Telecommunications Forum (TELFOR), 1-4.

Sell, L., Guo, J., Li, Z.S., & Keyser, T. (2018). A Dynamic Programming Approach for

Planning Reliability Growth. In Annual Reliability and Maintainability Symposium

(RAMS), 1-6.

Pan, Z., Yu, T., Li, J., Qu, K., Chen, L., Yang, B., & Guo, W. (2020). Stochastic transactive

control for electric vehicle aggregators coordination: A decentralized approximate

dynamic programming approach. IEEE Transactions on Smart Grid, 11(5), 4261-4277.

http://doi.org/10.1109/TSG.2020.2992863

Webology, Volume 19, Number 1, January, 2022

93 http://www.webology.org

Zhang, W., Wang, X., Yan, J., & Zha, H. (2017). A divide-and-conquer approach for

large-scale multi-label learning. In IEEE Third International Conference on Multimedia

Big Data (BigMM), 398-401. http://doi.org/10.1109/BigMM.2017.35

Vodopyanov, K.L., Leindecker, N.C., Marandi, A., Byer, R.L., & Pervak, V. (2011).

Divide-and-conquer approach to the generation of mid-infrared frequency combs. In

Conference on Lasers and Electro-Optics Europe and 12th European Quantum

Electronics Conference (CLEO EUROPE/EQEC), 1-1.

Ghosh, G., Samanta, D., Paul, M., & Janghel, N.K. (2017). Hiding based message

communication techniques depends on divide and conquer approach. In International

Conference on Computing Methodologies and Communication (ICCMC), 123-128.

Farahat, A.K., Ghodsi, A., & Kamel, M.S. (2011). An efficient greedy method for

unsupervised feature selection. In IEEE 11th International Conference on Data Mining,

161-170. http://doi.org/10.1109/ICDM.2011.22

Hariharan, R., Mahesh, C., Prasenna, P., & Kumar, R. V. (2016). Enhancing privacy

preservation in data mining using cluster based greedy method in hierarchical approach.

Indian Journal of Science and Technology, 9(3), 1-8.

Guan, P., & Wang, J. (2019). Optimal Adaptive Coordinated Cyber-Attacks on Power Grids

using∊-Greedy Method. In North American Power Symposium (NAPS), 67(9),

2249-2262. http://doi.org/10.1109/TSP.2019.2903017

Hayder, I.M., Younis, H.A., & Younis, H.A.K. (2019). Digital Image Enhancement Gray Scale

Images in Frequency Domain. In Journal of Physics: Conference Series, 1279(1).

http://doi.org/0.1088/1742-6596/1279/1/012072

Jiang, C., Chen, Z., Su, R., & Soh, Y.C. (2019). Group greedy method for sensor placement.

IEEE Transactions on Signal Processing, 67(9), 2249-2262.

http://doi.org/10.1109/TSP.2019.2903017

Zhang, W., Feng, W., Zhao, H., & Zhao, Q. (2019). Rapidly Learning Bayesian Networks for

Complex System Diagnosis: A Reinforcement Learning Directed Greedy Search

Approach. IEEE Access, 8, 2813-2823. http://doi.org/10.1109/ACCESS.2019.2952143.

Guan, P., & Wang, J. (2019). Optimal Adaptive Coordinated Cyber-Attacks on Power Grids

using∊-Greedy Method. In North American Power Symposium (NAPS), 67(9),

2249-2262. http://doi.org/10.1109/TSP.2019.2903017

Li, Z., Huang, F., Liu, X., & Duan, X. (2010). Chessboard Coverage Teaching Based on

Divide-and-Conquer Algorithm. Modern Applied Science, 4(1), 36-43.

http://doi.org/10.5539/mas.v4n1p36

Bakhthemmat, A., & Izadi, M. (2020). Decreasing the execution time of reducers by revising

clustering based on the futuristic greedy approach. Journal of Big Data, 7(1), 1-21.

http://doi.org/10.1186/s40537-019-0279-z

Sannemo, J. (2018). Principles of Algorithmic Problem Solving. Draft version.

Younis, H.A., Hayder, I.M., Seger, I.S., & Younis, H.A.K. (2020). Design and implementation

of a system that preserves the confidentiality of stream cipher in non-linear flow coding.

Journal of Discrete Mathematical Sciences and Cryptography, 23(7), 1409-1419.

http://doi.org/10.1080/09720529.2020.1714890

Webology, Volume 19, Number 1, January, 2022

94 http://www.webology.org

Ozolins, A. (2020). Bounded dynamic programming algorithm for the job shop problem with

sequence dependent setup times. Operational Research, 20(3), 1701-1728.

http://doi.org/10.1007/s12351-018-0381-6

Malhotra, M., & Chhabra, J.K. (2018). Micro level source code summarization of

optimal set of object oriented classes. Webology, 15(2), 113-132.

Appendices

Appendix (A)

Proposed Algorithm (1)

This method can be used to save data in memory as L-shape to avoid hackers attack, so it

is not easy to track data unless having the method in which it was saved previously.

1. K=13

2. board =(2k,2k)

3. point=selecting point \\assume top-right inboard is the selected point.

4. Xbeg ,Ybeg =0

5. Xend ,Yend =2k

6. ChessBoardRec(board,Xbeg,Ybeg,Xend,Yend)

7. If board <=1 then

8. Return

9. End if

10. point=SearchPoint(board)

11. L_Shape=DrawL_shape(board,point)

12. Put L_Shape in the center

13. ChessBoardRec(board,Xbeg,Ybeg,Xend/2,Yend/2)

14. ChessBoardRec(board,Xbeg,Yend/2,Xend/2,Yend)

15. ChessBoardRec(board,Xend/2,Ybeg,Xend,Yend/2)

16. ChessBoardRec(board,Xend/2,Yend/2,Xend,Yend)

1. SearchPoint(board)

2. If board (0,0) <>Empty

3. Return point= board (0,0)

4. Else if board (0, Yend) <> Empty

5. Return point= board (0, Yend)

6. Else if board (Xend, Yend) <> Empty

http://doi.org/10.1007/s12351-018-0381-6
http://doi.org/10.1007/s12351-018-0381-6

Webology, Volume 19, Number 1, January, 2022

95 http://www.webology.org

7. Return point= board (Xend, Yend)

8. Else if board (Xend, 0) <> Empty

9. Return point= board (Xend, 0)

10. End if

1. DrawL_shape(board,point)

2. If point = top-right then

3.

4. Else If point = top-left then

5.

6. Else If point = bottom-right then

7.

8. Else If point = bottom-left then

9.

10. End if

Appendix (B)

Proposed Algorithm (3)

1. K=13

2. board =(2k,2k)

3. DrawDiagonal (main and secondary)

4. ChessBoardRec (board,Xbeg,Ybeg,Xend,Yend)

5. If board <= 4 then

6. Return

7. End if

8. DrawDiagonal (main or secondary)

9. ChessBoardRec(board,Xbeg,Ybeg,Xend/2,Yend/2)

10. ChessBoardRec(board,Xbeg,Yend/2,Xend/2,Yend)

11. ChessBoardRec(board,Xend/2,Ybeg,Xend,Yend/2)

12. ChessBoardRec (board,Xend/2,Yend/2,Xend,Yend)

